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a b s t r a c t

This paper proposes that yield stability patterns exist for multiple crops planted on the same land area
over a period of years that growers can use to their advantage in planning crop management strategies
using precision agriculture technologies. This study examines the relationship of soil elevation, slope,
aspect and curvature to crop yield stability using a digital elevation model of the study area derived from
a precise light detection and ranging (LIDAR) image of the farming area and surroundings. Three crop
years of cotton and two crop years of corn yields were used to evaluate this hypothesis. The interpolation
methods of Inverse Distance Weighted (IDW), simple Kriging and Natural Neighbor found in ESRI’s ARCGIS
were used to produce crop yield maps. These methods were also compared in the analysis. Simple Kriging
gave the best R2 estimates of yield as a function of elevation, slope, curvature and aspect. When the SAS
FastCluster procedure was used to group yield points together using topographical features, the resulting

2
ield monitor
igital elevation map
patial analysis
luster analysis

regression analyses R values of yield as a function of elevation, aspect, curvature and slope by cluster
number were improved.

Published by Elsevier B.V.
errain features

. Introduction

Precision agriculture has been defined as “applying the right
ractice at the right time in the right amount” and “farming by the
quare foot”. With the advent of geographical positioning systems
GPS) and microcomputer-based controllers on farm equipment,
he application of precision agriculture technology has generated
onsiderable amounts of data and data mining opportunities for
esearchers. Or put another way, “We are drowning in informa-
ion and starving for knowledge – Rutherford B. Rogers” (Bullock et
l., 2007). As each crop year finishes, growers collect yield maps of
heir fields as generated by yield monitors and GPS sensors on their
arvest equipment. These maps are in addition to maps generated
y variable rate applications involving pre-plant chemical applica-
ions, precision planting and post planting chemical applications,
hich can be extensive and numerous according to the crop planted

nd to the as-applied maps collected by the application equipment
hich can be different from the prescription.

In addition, some growers have automated weather stations on

heir farms and record temperature, humidity (or dew point), rain-
all, solar radiation, and daily wind run. The challenge is to use these
ata to help growers better manage their crops. While traditional
eplicated small plot research has excelled in finding differences

∗ Corresponding author. Tel.: +1 662 320 7449; fax: +1 662 320 7528.
E-mail address: james.mckinion@ars.usda.gov (J.M. McKinion).

168-1699/$ – see front matter. Published by Elsevier B.V.
oi:10.1016/j.compag.2009.10.005
among means for treatments, a new opportunity has arisen with
the advent of precision agriculture. New methods are available
that can assist growers in better management of their limited
resources (Bullock and Bullock, 2000; Drysdale and Metternicht,
2003; Fleming et al., 2000; Hornung et al., 2006; Kaspar et al., 2003;
Kravchenko and Bullock, 2002a,b; Kravchenko et al., 2005; Mueller
et al., 2001).

According to Kaspar et al. (2003), the use of yield maps in deci-
sion making for the next season is difficult because of the problems
of interpretation. There are many mitigating factors. Permanent
spatial factors that affect yield either directly or indirectly are land-
scape position, terrain attributes, erosion class and soil properties
(Spomer and Piest, 1982; Stone et al., 1985; Jones et al., 1989;
Kravchenko and Bullock, 2000). Transient spatial factors which can
affect yield in specific areas in one year but not every year are
insects, disease pathogens and planter or applicator malfunctions.
Measurement errors in the yield monitor equipment can also occur
(Lark et al., 1997; Colvin et al., 1997). As a result errors that occur
in one year can obscure patterns in the yield map making it diffi-
cult or impossible to discern clear trends or patterns (Kaspar et al.,
2003). Thus, maps from several years are needed to discern these
patterns.
Digital Elevation Models (DEM) and Remote Sensing data
provide information about the earth’s surface and can aid in deter-
mining characteristics of the landscape and the soil (Drysdale and
Metternicht, 2003). In this research we hypothesized that terrain
features of a field are significantly related to crop yield across years

http://www.sciencedirect.com/science/journal/01681699
http://www.elsevier.com/locate/compag
mailto:james.mckinion@ars.usda.gov
dx.doi.org/10.1016/j.compag.2009.10.005
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Table 1
Lidar specifications.

Flying height 3000 m AMT
Airspeed 110 knots
Laser pulse rate 43 kHz

allows receipt of return data from multiple objects as the laser
beam travels towards the ground. All ranges have been corrected
for atmospheric refraction and transmission delays. The resulting
three dimensional coordinates are compiled in a mass point file of
88 J.M. McKinion et al. / Computers and E

nd crop species. If this hypothesis is correct, knowledge of these
errain features can be used to improve management of the crop
rrespective of crop species.

The specific objective of this research is to explore the hypoth-
sis that yield stability patterns exist for multiple crops planted
n the same land area over a period of years that growers can use
o their advantage in planning crop management strategies using
recision agriculture technologies. Further, high resolution LIDAR

nformation on field surface topology can aid in the spatial analysis
rocess, and the statistical analysis procedure cluster analysis can

mprove goodness of fit in applying regression analysis.

. Spatial variability

Kravchenko and Bullock (2002a) reported that environmental
actors affecting crop growth are often spatially variable and this
ariability extends from microscales to field and watershed scales.
oil characteristics are often distributed within fields in a manner
hat is amenable to geostatistical description and analysis (Warrick
t al., 1986). The variability of environmental and soil factors con-
ributes to variability in crop performance. Miller et al. (1988)
bserved spatial correlations between wheat harvest indices and
oil clay content. Jaynes and Colvin (1997) observed spatial struc-
ure in within-field crop yield variability for 6 years of corn and
oybean yields in Iowa.

Kravchenko and Bullock (2002a) state that topography is a par-
icularly attractive variable in describing and predicting spatial
ariability of crop yields for precision agriculture management. It
s a soil formation factor that defines distribution of soil moisture,
rganic matter content, nutrients, soil textural composition and
oil physical properties which affect crop growth and yield within
field (Changere and LaL, 1997; Hanna et al., 1982; Moore et al.,
993). Topography also affects temperature and humidity varia-
ions within a growing crop. Thus, topography can be regarded
s a compound parameter that reflects the combined influence
f various yield-affecting factors and interactions. Topographi-
al variables such as elevation, terrain slope and curvature can
xplain from 6 to 54% of the variability of corn and soybean yields
Kravchenko and Bullock, 2002a). Timlin et al. (1998) found surface
urvature to be a useful parameter for describing yield, topography,
nd weather relationships.

. Remote sensing

Optical remote sensing measurements record the radiation
mitted and reflected from the soil surface (Drysdale and
etternicht, 2003). There is very little penetration of electromag-

etic energy through the soil body. Soil reflectance derives from
he inherent spectral behavior of the heterogeneous combination
f the biochemical (mineral and organic) constituents, geometrical-
ptical scattering (particle size, aspect, roughness) and moisture
onditions of the surface (Baumgardner et al., 1995; Ben-Dor et al.,
998; Irons et al., 1989).

The capability to create digital surface models (DSMs) of eleva-
ion for rural or urban landscapes is facilitated by light detection
nd ranging (LIDAR) or laser scanning sensor systems (Axelsson,
999; Baltsavias, 1999; Jensen, 2000; Wehr and Lohr, 1999; Willers
t al., in press). Digital surface models (DSMs) are topographic maps
f the earth’s surface that provide one with a geometrically cor-
ect reference frame over which other data layers can be draped

Intermap Technologies, 2009). For this study we use the generic
erm DSM for representing the topographic features of elevation,
lope, aspect, and curvature except when explicitly defining a sin-
le component, i.e. DSM of elevation. A DSM describing landscape
levations creates opportunities for solving many problems (i.e.,
Field of view 25◦

Scan rate 40 Hz
Average swath width 405 m

information about vegetation, vegetation growing under power
lines, automatic capture of buildings for modeling purposes, extrac-
tion of breaklines (road edges or hydrographics features) from
terrain features) (Ackerman, 1999; Filin, 2004). DSMs of eleva-
tion have been widely applied in forestry (Kraus and Pfeifer, 1998;
Means et al., 2000; Popescu et al., 2002), bare-earth extraction
(Sithole and Vosselman, 2004), urban planning (Shan and Sampath,
2005) and many other applications (Barnes et al., 1990; Hollaus et
al., 2005; Leyva et al., 2002). It is essential that LIDAR data be of
high quality (Latypov, 2002) in all of these applications, particu-
larly for agricultural fields that have low relief. Sources of errors in
LIDAR data can be apportioned into (1) random and/or (2) system-
atic causes and (3) blunders (Baltsavias, 1999; Huising and Pereira,
1998) and/or random errors, corrected by manual or automated
filtering methods (Frtich and Kilian, 1994). Systematic errors are
due to characteristics of the laser scanner itself and/or the inter-
nal navigation system (INS) of the aircraft carrying the scanner.
Systematic errors must also be corrected in order to produce good
quality DSMs of elevation (Morin, 2002; Skalud and Lichti, 2006;
Vosselman, 2002).

4. Materials and methods

This study was conducted on the Paul Good Farm located in
the northeast central edge of Mississippi in Noxubee County, MS,
USA and consists of approximately 600 hectares of gently rolling
contiguous farm area. The field used for this study was field F160
which consists of 65 hectares (160 acres) and is bounded on all four
sides by farm roadways. Farming enterprises include dryland crop
rotations of cotton, corn and soybeans.

5. Digital elevation model

EarthData Aviation1 (Hagerstown, MD) acquired the data to gen-
erate the digital elevation model (DEM) for the Paul Good Farm on
May 12, 2003 using its Navajo aircraft. A DEM is the representa-
tion of continuous elevation values over a topographic surface by
a regular array of z-values, referenced to a common datum. DEMs
are typically used to represent terrain relief (GIS Dictionary, 2009).
LIDAR data was captured using an ALS40 LIDAR system, includ-
ing an inertial measuring unit (IMU) and a dual frequency GPS
receiver. The areas of interest were overflown at an altitude of
3000 m (9842 ft.) above the terrain. The LIDAR specifications are
given in Table 1.

LIDAR, IMU, and GPS data were correlated using GPS time and
processed using LIDAR post-processing software to determine the
coordinate of each point on the ground. The AeroScan LIDAR is
able to receive up to three returns from each laser shot fired. This
1 Mention of trade names or commercial products is solely for the purpose of pro-
viding specific information and does not imply recommendations or endorsement
by the U.S. Department of Agriculture.
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Table 2
Accuracy of the LIDAR data compared to kinematic
ground data points for the Paul Good Farm on May 12,
2003.

Vertical accuracy 10.7 cm RMSE
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Standard deviation 10.7 cm
Mean difference 0.0 cm
Number of points in sample 481

, y, z on the UTM projection. Ellipsoidal heights were converted to
AVD88 using Geoid 99. These files were in an EarthData binary

ormat (E-EBN). Initial evaluation of the LIDAR data was accom-
lished including comparison of the data from flight line to flight

ine and against the walk-around, ground survey.
A walk-around survey by ground personnel was conducted by

arthData Aviation to collect profile data of taxiways and runways
t the base airports, as well as within one of the project sites. These
ata were supplemented with several NGS control station points

ocated within the project area. This survey was used for accuracy
erification of the processed LIDAR data.

The comparison with the kinematic survey yielded the results
hown in Table 2.

To be able to use the LIDAR data for the Paul Good Farm, the
inary data files with multiple flight paths were converted to a
osaic grid format suitable for use with ESRI ARCGIS (ESRI, 1998)

nd ERDAS Imagine (Leica Geosystems, 2008) software as a digital
levation map. The resulting raster file had a cell size of 1 m × 1 m
ith a vertical representation of 1 m. The spatial reference system

f this DEM was expressed in the geographic coordinate sys-
em Geodetic Reference System (GRS) 1980 using the Universal
ransverse Mercator (an unprojected coordinate system) with a
RS, 1980 datum (Geodetic Reference Systems 1980, 2008). This
patial reference system can easily be projected onto a planar
oordinate system to display data properly or measure distances
ccurately.

. Yield monitor data

Five yield monitor datasets were used in this analysis. There
ere three cotton datasets collected in 2001, 2003 and 2004, and

wo corn datasets collected in 2002 and 2005. The cotton yield
atasets were collected using an AgLeader Cotton Yield Monitor
odel PF 3000 paired with GPS mounted on the cotton pickers
ith GPS signals collected from satellites and from the subscrip-

ion service provided by Omnistar. An AgLeader Yield Monitor
as used on the corn harvesting equipment with GPS to record

he corn yields in 2002 and 2005. The yield monitor data were
ecorded in North American Datum (NAD) 1983, in the Univer-
al Transversal Mercator UTM system, with the area of interest in
one 16 North, and were exported from the yield monitors as shape
les.

. Software

Three software packages were used in this study. The ESRI
RCGIS 9.2 system and the ERDAS Imagine 9.1 system were used

or all aspects of image analysis and spatial data analysis. We found
hat both ARCGIS and Imagine have their own strengths which
ould be combined to produce the results desired. The Statistical

® ® ®
nalysis System (SAS ) 9.1 and SAS Enterprise by the SAS Insti-
ute (SAS®, 2008) were used for all statistical analyses. Since all of
he yield monitor data were in the NAD 1983 UTM Zone 16 N pro-
ection (Standardization of Coordinate Systems and Datums, 2008)

ith meters for land measurement distance, we chose to use this
s the projection for all studies reported here.
Fig. 1. Detailed F160 Mask shown in hillshade relief which is used to extract data
from yield monitor data maps where elevation of the mask is in meters above the
ellipsoid.

8. Good farm field 160

We chose Field 160 of the Good Farm for our study area, because
it had interesting and desirable topographical features. These fea-
tures included elevation changes over 10 m and aspect exposure
for 360◦. There were also flat terrain features and a drainage area
with substantial slope differentiation. The field consists of 160 acres
(65 ha), hence its name. The field is gently rolling land with features
from 62 m to 70 m of elevation above the ellipsoid. Drainage flows
both to the east and to the southwest with a prominent drainage
ditch in the southwest quadrant. Field 160 is shown in Fig. 1 as the
grey area in the diagram.

9. Mask layers

Field 160 DEM was used as the mask layer for extraction of all
features for the spatial analysis of the yield data. The farm DEM was
first extracted from the overall DEM created from the LIDAR mosaic
image using the polygon extract tool in the ARCGIS Spatial Analyst
tool set generating the layer Crop DEM. Then the Crop DEM was
shaded using the Hillshade tool to better highlight road features.
Next the polygon extract tool was used to extract Field 160 which
is bounded by roads on all sides generating the layer F160 Mask.
Now F160 Mask is a 1 m × 1 m grid with a 1 m elevation feature.

10. Inverse distance weighted (IDW), Kriging and Natural
Neighbor layers

All yield monitor datasets were converted from point or vector
datasets to grids using the ARCGIS Spatial Analyst toolset so that
in the analysis every yield data point from each production year
could be used along with data points from topographical features.
The yield monitor vector data for cotton and corn are shown in the
maps in Figs. 2–6. Generally two harvest machines were used in the
harvest operation, but only one was equipped with a yield monitor
and GPS. In some parts of the field, generally in the western zone,
only the harvester with the yield monitor and GPS equipment was

used, producing yield data from all rows. As the harvest proceeded
to the east, two harvesters were used side by side, one with a yield
monitor and the other without. Thus, interpolation methods had
to be used to generate a yield map for the entire field. In some
of the eastern areas of Field 160 only the harvester without yield
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Fig. 2. Yield monitor data map for cotton in 2001.

Fig. 3. Yield monitor data map for corn in 2002.

Fig. 4. Yield monitor data map for cotton in 2003.
Fig. 5. Yield monitor data map for cotton in 2004.

monitoring capability was used, resulting in yield data gaps, and
these areas were excluded in the analysis. The tools we used were
under the Interpolation heading in ARCGIS Spatial Analyst and were
the inverse distance weighted, ordinary point Kriging and Natural
Neighbor tools. Given that this process produces interpolated grids,
we chose to create a 3 m × 3 m raster grid. A total of fifteen grids
were created since there were 5 crop years. Since the Kriging func-
tion and the IDW function in ARCGIS create rectangular areas and
Field 160 is irregularly shaped, the next step was to reduce the
area to only Field 160 area located within the generated rectan-
gle. This was done using the ARCGIS Spatial Analyst tool Extract by
Mask. The mask grid layer was F160 Mask. The three sets of grids
for IDW, Kriging, and nearest neighbor for the five crop years were
to be used for comparison of the interpolation method using simple
regression.
11. Elevation, aspect, slope, and curvature layers

The layer F160 Mask contains the elevation data for Field 160 as
shown in Fig. 1. The F160 Mask was created from a large area LIDAR

Fig. 6. Yield monitor data map for corn in 2005.
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was nonsignificant with the exception of the regression for the
corn data from year 2005 using the Natural Neighbor interpolation
method. Simple quadratic regression did not show any significant
improvement in explanation and thus is not presented.
J.M. McKinion et al. / Computers and E

ap which encompassed the entire Good Farm and surrounding
rea. The root mean square error of the LIDAR map was 10.7 cm.
rom this map, a one meter DEM grid was created. Even though
IDAR is very accurate, some artifacts were found in the DEM. After
he F160 Mask was created, there were some imperfections found
hich could affect further analyses. These are called sinks, or errors

n data. We used the ARCGIS tool called Fill which is found under
he Hydrology heading in Spatial Analyst. The Fill tool removed all
f the sinks in the F160 Mask grid. To further smooth the data in the
160 Mask, the ARCGIS tool Block Statistics was used with filter-
ng parameters selected for an annulus filter with an inner radius
f 1 m and an outer radius of 3 m with the mean value to be calcu-
ated. This created a raster grid layer with smoothed features called
160 Msk Fcl which was used subsequently to produce all other
urface features. Using the tools under Spatial Analyst heading Sur-
ace, we next created grids with feature data of aspect, slope and
urvature using the respective tools named, appropriately, Aspect,
lope and Curvature.

2. Analysis of results and discussion

In all of the regression analyses performed in this study, yield
as used as the dependent variable and topographical features

f elevation, aspect, curvature and slope derived from a very
igh density LIDAR image of the field were used as the indepen-
ent variables. Both simple linear regression and simple quadratic
egression were used in the analyses. The LIDAR data were actually
egraded from an original image of 0.3 m × 0.3 m pixel resolution.
o obtain maps in which the yield data pixel points matched the
IDAR pixel points a number of image processing steps had to be
erformed which are described subsequently.

Because all of the yield maps and the topographical maps were
onverted to grids with common geometry, each valid data point
a 3 m × 3 m pixel) could be used in the analysis. This is because
ach data point for each crop year and each data point for each
opographical feature had a common geographic reference point,
n Easting and Northing location pair. Even so, there were still data
nomalies in the yield maps with zero values from ARCGIS NoData
alues. These had to eliminated.

To prepare these above grids for statistical analysis using the
AS® system (SAS, 1985) we used the ERDAS Imagine software.
e converted all 15 yield grids and the 4 surface grids into one

tack layer consisting of 19 grids along with x and y data. Since the
ield maps had cell sizes of 3 m × 3 m and the surface maps had
ell sizes of 1 m × 1 m, the option was chosen in Imagine to create
he stack layer using the maximum cell size of 3 m × 3 m for all 19
ayers, using the mean for each 9 cells of the surface grids. After

anipulating the stack layer to recode missing data to −9999, we
onverted the resulting stack layer to an ASCII file for import into
AS®.

Using SAS®, all of the data with missing values coded as −9999
rom above were eliminated from the dataset. We were then left
ith a dataset of 19 columns with 65,031 rows. This reduced dataset
roduced the surface maps shown in Figs. 7–10 which represent
levation, aspect, curvature and slope of the field, respectively with
ixels of 3 m × 3 m.

To prevent statistical anomalies from occurring because of scale
ifference between yield for cotton and yield for corn and to try
o equate data for year to year analyses, all of the yield data were
ormalized using Eq. (1)
N = Yi − GMAX
GMAX − GMIN

× 255 (1)

here YN is the normalized result, Yi is the yield for each grid point
n terms of either IDW, Kriging, or Natural Neighbor interpolation
or each cotton or corn crop in years 2001 to 2005, GMAX is the
Fig. 7. Elevation surface map for Field 160 in meters above mean sea level.

global maximum for each set and GMIN is the global minimum for
each set. The resulting yield data produced by Eq. (1) produces data
which is scaled from 0.0 to 255.0. The resulting dataset (a .dbf file)
was the final dataset with which all further statistical analyses were
performed.

Simple linear regression and simple quadratic regression was
performed upon each of the fifteen yield grids using yield as the
dependent variable and elevation, aspect, curvature and slope as
the independent variables. Results for simple linear regression are
given in Table 3. Where as each regression showed that there were
statistically significant relationships present, the R2 values were
very low ranging from 0.1% to 11%. In each regression, curvature
Fig. 8. Aspect surface map for Field 160 in degrees from due north equal zero
degrees.
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Table 3
Model R2 values for the fifteen regression datasets generated by five crop years and three interpolation methods and significant independent variables where EL is elevation,
AS is aspect, CV is curvature, and SL is slope.

Regression of the form Y = I + C1 × EL + C2 × AS + C3 × CV + C4 × SL

Interpolation method IDW Kriged Natural Neighbor

Statistics R2 Significant at Pr > |t| <0.0001 R2 Significant at Pr > |t| <0.0001 R2 Significant at Pr > |t| <0.0001

2001 Cotton 0.0468 EL, AS, SL 0.0925 EL, SL 0.0659 EL, SL
2002 Corn 0.0014 EL 0.0987
2003 Cotton 0.0949 EL, AS, SL 0.0659
2004 Cotton 0.1056 EL, SL 0.0012
2005 Corn 0.0659 EL, SL 0.0052

Fig. 9. Curvature surface map for Field 160 where a positive number indicates con-
cave down and a negative number indicates convex upward and zero indicates a flat
surface.

Fig. 10. Slope surface map for Field 160 where slope is in per cent with zero being
flat and 90% being vertical.
EL, AS, SL 0.0500 EL, AS, EL
EL, SL 0.0014 EL
EL 0.0960 EL, AS, SL
EL, AS 0.1008 ALL

Since we did not find much of the variability explained by sim-
ple linear regression analysis for the entire dataset, we reanalyzed
the data using the SAS® Fast Cluster algorithm. The entire dataset
was used in analyses, producing a new column of data added for
each interpolation method both with and without using the four
surface features (elevation, aspect, curvature, and slope). These
analyses created six new datasets with cluster information of IDW
without topology, IDW with topology, Kriging without topology
Kriging with topology, Natural Neighbor without topology and Nat-
ural Neighbor with topology. The clustering was performed using
yield data. The reason for using clustering was to aggregate simi-
lar yield data points together with the express purpose to analyze
the yield data points in each cluster for statistical significance. The
clusters of yield data points would also represent yield areas which
could then be mapped using Geographic Information System (GIS)
processing. An observer could then use this yield stability map to
relate to topographical differences in the field to yield differences
(Cox and Gerard, 2007). These datasets were then imported into
ARCGIS and maps were created displaying the cluster results for
each interpolation method for the normalized crop yield data. The

cluster data for the Kriged data sets are shown in Figs. 11 and 12. In
each figure, there are 20 clusters indicated by the legend on the left.
The same color scheme is used in each. The value of 20 clusters was
chosen so that fine details of transition of field topography could
be discerned by the observer.

Fig. 11. ARCGIS map of cluster analysis using the Kriging algorithm without topol-
ogy information and with all five years of scaled crop data. The Fast Cluster algorithm
was used in SAS® and data was exported as .dbf file and imported into ARCMAP, con-
verted to a shape file, and displayed using the color legend according to the cluster
number.



J.M. McKinion et al. / Computers and Electron

F
i
i
a

i
d
E
p
h
s
d
p

u
m

Y

w
a
p
R
d
t
E
G
m

I
I
i
t
c
h
c
y
I
t
l
p
w
a
y

orange area are typically the lowest for Field 160. The objective of
this research was to demonstrate that a yield stability map for a
commercial row-crop field could be obtained using high density,
highly accurate LIDAR imaging as a base map from which topo-

Fig. 13. Yield stability map derived from scaling cotton and corn yields to the same
dimensionless range of values from a minimum of 0 to a maximum of 255 using
the SAS® Proc Fast Cluster algorithm generating 20 data clusters as indicated by
the colors of the map for the entire five years of yield data using IDW, Kriging, and
Natural Neighbor interpolations and the variables elevation, aspect, curvature and
slope. The largest areas of dark and light magentas and blue show clusters where
the most productivity from Field 160 occurred for the five years. This area can be
described as being in the lower elevation zone with water from rainfall draining
ig. 12. ARCGIS map of cluster analysis using the Kriging algorithm with topology
nformation and all five years of scaled crop data. The Fast Cluster algorithm was used
n SAS® and data was exported as .dbf file and imported into ARCMAP, converted to
shape file, and displayed using the color legend according to the cluster number.

Examining the pair of figures produced by using the Kriging
nterpolation method both with and without using surface features
uring the clustering procedure sheds little common information.
ach map is very different from the other. One thing that does
resent itself is the presence of linear features in the maps. We
ave found that often linear (or straight line) features represent
omething that the grower has done to the crop (such as planting
ate or fertilizer changes) and is not a natural physical or biological
henomenon.

Taking the analysis further, each of the six cluster datasets were
sed in quadratic regressions using the SAS® Proc GLM with the
odel taking the form:

= Intercept + X1 + X2 + X3 + X4 + X2
1 + X2

2 + X2
3 + X2

4 , (2)

here X1 is elevation, X2 is aspect, X3 is curvature and X4 is slope
nd the dependent Y values are the yields which are normalized
oint data from IDW, Kriging, and Natural Neighbor interpolations.
egressions were performed using the results from the clustered
atasets both with and without using surface topographical fea-
ures to produce the clusters. Data were first sorted in SAS® using
asting and Northing, and then sorted again using Cluster. In Proc
LM, the regressions were produced using the ‘by cluster’ state-
ent.
Results of the regression analyses are given in Tables 4–6 by

DW, Kriging, and Natural Neighbor interpolations, respectively.
nspection of the regression results shows a marked improvement
n the R2 fit. Each cluster analysis with and without surface fea-
ures produced differing numbers of yield points for each type of
luster. That is, each cluster without surface features for each year
ad the same number of data points and was different from each
luster with surface features, which then had the same number of
ields points for each year, for IDW, Kriging, and Natural Neighbor.
n all three tables, there were clusters of yield points which were
oo few in number to perform regression upon. These clusters were

isted as NA in the tables. There were also clusters with enough data
oints that regression could be performed, but since the number
as small, the regression R2 was unusually high and should prob-

bly be disregarded. For each cluster analysis, there were 65,031
ield data points to be allocated to clusters.
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Using the above criteria, the regressions in each table show that
Kriging, in general, produced a better fit than either IDW or Natural
Neighbor interpolations, with Natural Neighbor better than IDW.
There was more of a preponderance of higher R2 for Kriging than for
either of the other two interpolation methods. A second observa-
tion is that when the surface features are included in the clustering
procedure, the R2 increases for each type of interpolation method.
This is very reasonable for one is using more information about the
crop and the area in which it grows. This also says that topography
and geo-processing can add useful information to the system.

Finally, all fifteen normalized yield vectors using all three inter-
polation methods were used as analysis variables, and the surface
variables were used as grouping variables. Fast Cluster analysis, in
Fig. 13, showed that there were 20 statistically important clusters
of data over the five year period, regardless of crop planted since the
regression analysis showed that for each interpolation method used
on the clustered yield data points there was a significant increase
in the R2 value. The areas designated by the colors Light Magenta,
Dark Magenta, and Blue represent the primary productivity areas
of Field 160. These areas are typified by lower elevation, thereby
receiving more water by drainage from the higher elevations. Since
the Good Farm uses dryland farming practices, no irrigation water
is used. The area of the field represented by the Orange color is
the higher elevation areas and is exposed by slope to more direct
sunlight. Water drains away from these areas due to elevation and
slope, therefore, less water is available to the crops. Yields from the
into this area from the upper elevations and having either an eastern or western
aspect. The large cluster indicated by orange color shows where lower productivity
occurred. This area can be described as being on the high elevation zone and with a
southern exposure generally having less water availability and more direct sunlight.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of the article.)
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Table 4
Regression analysis shown for five crop years of data using IDW interpolation with cluster analysis. Cluster analysis was performed first using only the yield data and then with the surface features of elevation (EL), aspect (AS),
curvature (CV), and slope (SL). The regression equation was of the form Y = Intercept + EL + AS + CV + SL + EL2 + AS2 + CV2 + SL2. NA means too few data points for regression. In the VARIABR-Square columns the X indicates the year
the crop was harvested, i.e. 2001 for 1. Unless otherwise indicated by symbols described below, the level of significance for each R2 value is P < 0.0001.

Cluster analysis without surface features included Cluster analysis without surface features included

Cluster number Observations R-squared 1 R-squared 2 R-squared 3 R-squared 4 R-squared 5 Observations R-squared 1 R-squared 2 R-squared 3 R-squared 4 R-squared 5

1 67 0.222 0.14*** 0.485 0.439 0.456 536 0.659 0.68 0.53 0.37 0.263
2 617 0.158 0.145 0.112 0.199 0.067 8 NA NA NA NA NA
3 16039 0.057 0.07 0.056 0.137 0.032 5 NA NA NA NA NA
4 1096 0.28 0.142 0.221 0.092 0.033 245 0.27 0.179 0.177 0.332 0.027***

5 10 0.972*** 0.767*** 0.995*** 0.994*** 0.99*** 25 0.649** 0.585** 0.5*** 0.314*** 0.534**

6 19 0.826* 0.937 0.638*** 0.622*** 0.622*** 1012 0.115 0.274 0.214 0.151 0.187
7 5049 0.09 0.141 0.186 0.174 0.115 2 NA NA NA NA NA
8 53 0.047*** 0.369* 0.172** 0.23*** 0.38* 921 0.213 0.117 0.443 0.361 0.179
9 161 0.195 0.416 0.54*** 0.258 0.129* 5848 0.281 0.302 0.284 0.104 0.277

10 1414 0.263 0.52 0.298 0.185 0.102 2 NA NA NA NA NA
11 1 NA NA NA NA NA 22337 0.128 0.162 0.177 0.119 0.158
12 233 0.387 0.119* 0.295 0.141 0.59 51 0.527 0.375* 0.187*** 0.491* 0.456*

13 5 NA NA NA NA NA 37 0.057*** 0.521 0.215*** 0.187*** 0.101***

14 31 0.55** 0.546** 0.484** 0.618* 0.524** 3012 0.093 0.112 0.224 0.114 0.185
15 2791 0.105 0.193 0.2 0.067 0.045 7024 0.139 0.144 0.074 0.145 0.266
16 26842 0.071 0.042 0.173 0.073 0.046 4167 0.327 0.226 0.341 0.031 0.049
17 9653 0.272 0.093. 0.189 0.089 0.099 301 0.256 0.035*** 0.062** 0.42 0.373
18 928 0.046 0.226 0.113 0.166 0.137 780 0.148 0.161 0.203 0.256 0.135
19 18 0.627*** 0.758** 0.593** 0.405*** 0.694** 22 0.443*** 0.297*** 0.325*** 0.368*** 0.663**

20 4 NA NA NA NA NA 18696 0.423 0.285 0.31 0.238 0.1

* The significance is 0.01 > P ≥ 0.0001.
** The level of significance is 0.1 > P ≥ 0.01.

*** The level of significance is 0.99 > P ≥ 0.1.
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Table 5
Regression analysis shown for five crop years of data using Kriging interpolation with cluster analysis. Cluster analysis was performed first using only the yield data and then with the surface features of elevation (EL), aspect (AS),
curvature (CV), and slope (SL). The regression equation was of the form Y = Intercept + EL + AS + CV + SL + EL2 + AS2 + CV2 + SL2. NA means too few data points for regression. In the VARIABR-Square columns the X indicates the year
the crop was harvested, i.e. 2001 for 1. Unless otherwise indicated by symbols described below, the level of significance for each R2 value is P < 0.0001.

Cluster analysis without surface features included Cluster analysis with surface features included

Cluster number Observations R-squared 1 R-squared 2 R-squared 3 R-squared 4 R-squared 5 Observations R-squared 1 R-squared 2 R-squared 3 R-squared 4 R-squared 5

1 1667 0.198 0.457 0.492 0.224 0.099 5425 0.223 0.3 0.245 0.054 0.166
2 111 0.463 0.549 0.155** 0.153** 0.23* 495 0.064 0.307 0.276 0.238 0.127
3 154 0.556 0.136* 0.803 0.418 0.73 307 0.137 0.468 0.249 0.515 0.382
4 666 0.117 0.141 0.48 0.069 0.193 3107 0.225 0.148 0.253 0.111 0.231
5 182 0.289 0.059*** 0.614 0.302 0.275 44 0.183*** 0.682 0.09*** 0.466* 0.374**

6 19812 0.041 0.07 0.215 0.141 0.045 6153 0.151 0.163 0.134 0.266 0.071
7 3941 0.155 0.264 0.254 0.088 0.149 1499 0.368 0.284 0.606 0.371 0.35
8 143 0.331 0.291 0.58 0.103** 0.127* 11106 0.447 0.237 0.242 0.219 0.061
9 6915 0.106 0.126 0.068 0.147 0.062 6059 0.178 0.333 0.312 0.219 0.092

10 618 0.168 0.262 0.085 0.22 0.244 90 0.276 0.132*** 0.462 0.453 0.203**

11 20239 0.239 0.313 0.146 0.157 0.144 889 0.237 0.143 0.416 0.492 0.196
12 1110 0.167 0.346 0.301 0.14 0.085 348 0.655 0.09 0.155 0.174 0.284
13 419 0.509 0.36 0.365 0.388 0.205 4359 0.527 0.348 0.264 0.347 0.172
14 1081 0.352 0.261 0.354 0.124 0.047 21764 0.107 0.077 0.217 0.138 0.141
15 977 0.16 0.213 0.328 0.06 0.077 2312 0.21 0.222 0.261 0.213 0.269
16 707 0.127 0.175 0.213 0.177 0.064 663 0.407 0.473 0.357 0.268 0.164
17 29 0.143*** 0.757 0.284*** 0.328*** 0.436* 351 0.401 0.444 0.168 0.249 0.103
18 3254 0.155 0.348 0.127 0.218 0.16 119 0.183* 0.121** 0.632 0.399 0.583
19 350 0.205 0.162 0.413 0.243 0.075 186 0.354 0.387 0.161 0.11* 0.202
20 2657 0.027 0.108 0.215 0.332 0.168 1836 0.044 0.148 0.132 0.131 0.092

* The significance is 0.01 > P ≥ 0.0001.
** The level of significance is 0.1 > P ≥ 0.01.

*** The level of significance is 0.99 > P ≥ 0.1.



196
J.M

.M
cK

inion
et

al./Com
puters

and
Electronics

in
A

griculture
70 (2010) 187–198

Table 6
Regression analysis shown for five crop years of data using Natural Neighbor interpolation with cluster analysis. Cluster analysis was performed first using only the yield data and then with the surface features of elevation
(EL), aspect (AS), curvature (CV), and slope (SL). The regression equation was of the form Y = Intercept + EL + AS + CV + SL + EL2 + AS2 + CV2 + SL2. NA means too few data points for regression. In the VARIABR-Square columns the X
indicates the year the crop was harvested, i.e. 2001 for 1. Unless otherwise indicated by symbols described below, the level of significance for each R2 value is P < 0.0001.

Cluster analysis with surface features excluded Cluster analysis with surface features included

Cluster number Observations R-squared 1 R-squared 2 R-squared 3 R-squared 4 R-squared 5 Observations R-squared 1 R-squared 2 R-squared 3 R-squared 4 R-squared 5

1 31 0.837 0.704* 0.258*** 0.216*** 0.928 8 NA NA NA NA NA
2 5220 0.062 0.213 0.069 0.212 0.131 16612 0.069 0.104 0.083 0.128 0.215
3 89 0.354 0.183** 0.29* 0.369 0.104*** 499 0.547 0.284 0.242 0.333 0.456
4 1 NA NA NA NA NA 1617 0.389 0.315 0.302 0.063 0.338
5 151 0.173* 0.202 0.195 0.03*** 0.285 18 0.939 0.678** 0.576*** 0.423*** 0.635**

6 4 NA NA NA NA NA 9483 0.232** 0.367 0.31 0.149 0.182
7 979 0.149 0.129 0.099 0.142 0.023* 133 0.327 0.618 0.455 0.263 0.56
8 29898 0.192 0.153 0.085 0.117 0.052 12192 0.064 0.13 0.261 0.117 0.243
9 25 0.386*** 0.247*** 0.493*** 0.426*** 0.631** 44 0.556 0.194*** 0.386* 0.428* 0.312**

10 246 0.09* 0.112* 0.169 0.25 0.135 3 NA NA NA NA NA
11 194 0.495 0.589 0.435 0.45 0.453 107 0.302 0.246* 0.24* 0.162** 0.312
12 2097 0.186 0.218 0.216 0.152 0.171 846 0.394 0.294 0.363 0.203 0.076
13 2 NA NA NA NA NA 1624 0.221 0.061 0.176 0.185 0.251
14 3 NA NA NA NA NA 597 0.086 0.235 0.147 0.235 0.132
15 110 0.599 0.182* 0.188* 0.571 0.3 13517 0.1 0.033 0.223 0.08 0.156
16 12535 0.121 0.164 0.227 0.039 0.146 7518 0.225 0.245 0.134 0.079 0.251
17 9 NA NA NA NA NA 60 0.423* 0.31** 0.614 0.371* 0.635
18 8468 0.135 0.123 0.05 0.078 0.117 29 0.607* 0.228*** 0.104*** 0.422** 0.524**

19 59 0.108*** 0.415* 0.397* 0.342* 0.258** 53 0.277** 0.379** 0.462* 0.536 0.545
20 5000 0.104 0.13 0.324 0.221 0.201 71 0.14** 0.347** 0.375* 0.483 0.444

* The significance is 0.01 > P ≥ 0.0001.
** The level of significance is 0.1 > P ≥ 0.01.

*** The level of significance is 0.99 > P ≥ 0.1.
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raphical information could be derived. Fig. 13 demonstrates such
stability map and has been shown to be statistically valid.

Simple quadratic regression was performed on the dataset used
o create Fig. 13. The dataset consisted of all fifteen scaled yields
roduced from the yield monitor but scaled from 0.0 to 255.0. The
ataset also has all of the surface features of elevation, aspect, cur-
ature, and slope. Each of the 65,031 points was referenced by an
asting and Northing location pair. The results are given in Table 7.
2 from Kriged data generally have the highest values. As can be
een from examining Tables 3–7, there is a steady improvement in
he R2 values over the values in Table 3 indicating more accounting
or explanatory information as the procedures were refined.

Because the base map for all calculations involving topographi-
al variables used in this analysis were derived from a very accurate,
ense LIDAR map of elevation from which a digital elevation map
as created, the analysis was carried out without further consid-

ration of spatial structure (Lowenberg-Deboer et al., 2008). We
elieved that because of the density and accuracy of the LIDAR DEM
hat we could explore other methods to explain possible relation-
hips of crop yield stability. However, since the Kriged data method
roved to have the most explanatory capability of the yield variabil-

ty in the clusters of those explored, this possibly implies that there
s some spatial structure involved with these datasets. We propose
o explore this possibility in future work. While the number of clus-
ers was preset at 20 in this analysis, this clustering level was chosen
o that fine levels of transition from one yield area to another could
e seen in the resulting GIS map display. The regression analysis
erformed on the yield data points associated with each cluster
howed a steady increase in the R2 values as more information was
dded into the regressions. Each time more information was added,
he resulting cluster analysis showed that differing sets of yield data

oints would become associated with the new cluster sets of yield
ata points. We propose to add further information to this analysis

n future work and to reduce the number of clusters to a number
hich growers could more reliably interpret and use.

able 7
egression analysis shown for the combined dataset using Cluster Analysis for all
fteen scaled yield data points and the four surface features. The regression equation
as of the form Y = Intercept + EL + AS + CV + SL + EL2 + AS2 + CV2 + SL2. NA means too

ew data points for regression. There are three R2 values for each of the 20 cluster
alues, one each for IDW, Kriged, and Natural Neighbor. All R2 values are significant
t P < 0.05 unless denoted otherwise by the symbols described subsequently.

Regression equation Y = Int + EL + AS + CV + SL + EL2 + AS2 + CV2 + SL2

Cluster number Observations R Square
IDW %

R-Square
Krig %

R-Square Nat
Neigh. %

1 313 28 35 21
2 1512 7 9 7
3 30 22* 58* 49*

4 1556 22 30 22
5 12261 9 11 8
6 15020 14 16 13
7 184 9 12 6
8 40 27 32* 25*

9 363 21 23 19
10 24 42** 32** 39**

11 870 28 40 28
12 184 27 33 20
13 675 27 32 23
14 1021 24 31 27
15 91 24 29 18
16 89 28* 40 17***

17 29821 23 29 22
18 37 34 45 52
19 804 11 12 10
20 136 22**** 29 24

* The R2 value means significance at 0.9 < P < 0.1.
** The R2 value means significance at 0.8 < P < 0.1.

*** The R2 value means significance at 0.09 < P < 0.1.
**** The R2 value means significance at 0.6 < P < 0.06.
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13. Conclusions and further research

• Simple quadratic regression analysis of the yield data points that
produced these maps indicated that Kriging produced higher
explanatory statistics than either IDW or Natural Neighbor inter-
polation methods. When the entire dataset, using IDW, Kriging,
and Natural Neighbor interpolations of scaled yields combined
with surface features of elevation, aspect, curvature and slope,
was used with the SAS® Fast Cluster Analysis, this procedure pro-
vided the most information about Field 160 over the five year
period.

• Lower elevations in the field represented the most productive
areas while the higher elevations exposed to the southern aspect
were found to be the least productive over the five year study
period. Potential exists for the grower to focus more resources
upon the more productive areas to maintain higher productivity,
especially in years where less rainfall is predicted.

• The objective of this research was to show that a statistically valid
yield stability map for multi-crops grown over several years could
be developed for a commercial field using LIDAR imaging as the
base map. This was accomplished.

• A Class A weather station which collects temperature, daily wind
run, rainfall, dew point and solar radiation is located on the
farm, and weather data for all five years is available, represent-
ing potential variables for further analysis of the crop datasets. In
addition, electrical conductivity, Veris data, for the soil is avail-
able and will be used for additional analyses. Crop yield data for
years 2006, 2007, and 2008 are also being available and will also
be used in further analyses. The question of spatial structure as
indicated by the Kriging analysis will also be examined.
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